
Data Structures and Abstractions

Encapsulation
& Linked Lists
& 2D
Structures/Encapsulated
Data structure
& Abstract class and
Interface
Lecture 6

Records using struct

• C++ records (structs):
typedef struct

{

string firstname;

string surname;

int age;

} Person;

2 of 23

Records using class

• Encapsulating a record in a class:
class Person //any special behaviour for Person?

{

...

private:

string firstname;

string surname;

int age;

};

3 of 23

When to Encapsulate?
• The question is, which should you use?

• If there are any input processing or output
methods to be performed on a data structure
or it is composed of other objects, then it
should be encapsulated. [1]

• And, of course, if you encapsulate things in a
class, then you can test all the methods and
operators in isolation before having to
combine the code with the rest of your
program. UNIT TEST [1]

4 of 23

Arrays vs Lists

• We know how to declare and use “raw” array.
[1]

• We have looked at how to declare and use a
list.

• The main differences are:

• Obviously the list is better when it comes to
memory use.

5 of 23

An array has an initial size A list starts with 0 size

It is difficult to change the size of an
array

lists automatically resize as they grow

Arrays have no inbuilt functions lists have lots of inbuilt functions

When to Encapsulate

• The rule for records also holds true for arrays and lists.
As long as they are data stores that require little in the
way of processing, then you can just use them as is.

• However, if you need to do bounds checking or have
any processing that needs doing, or they contain
objects, then they should almost certainly be
encapsulated.

• And, of course, if you encapsulate things in a class,
then you can test all the methods and operators in
isolation before having to combine the code with the
rest of your program. (as before). ALWAYS UNIT TEST
before use in your program.

6 of 23

Advantages of Encapsulation
• The class can be tested in isolation before being used in a program. UNIT

TEST
• Changes and new code can be tested in isolation before being used in a

program. UNIT TEST
• This means that the testing of the program becomes modular and hence

easier, and more likely to be thorough.
• Which in turn means that programs are more likely to be robust and errors

are easier to find.
• It is easier to re-use code.
• Bounds checking is done in one file.
• Code is less complicated, and therefore easier to maintain.
• It becomes easy to alter how something is done without altering the main

(client or user) program.
• It becomes easy to alter how something is stored without altering the main

(client or user) program
• Memory can be more easily allocated dynamically in a safe manner.

7 of 23

Linked Lists
• We took a first look at linked lists in an earlier lecture note.

• Linked lists are an abstract class that model a particular type
of behaviour. In a linked list, you have:

– each node contains data and a pointer;

– the data can only be accessed in a serial manner from the
previous piece of data;

– access to the container as a whole is done via the first
element;

– the last element must point to NULL (nullptr) to ensure
algorithms cannot process past the end of the list.

8 of 23

first
NULL

The Linked List

• We looked at the Node class (data plus pointer).

• A linked list class simply contains a Node or
pointer to a Node.

• If it contains an actual node, it makes processing
easier, but wastes the space of that Node.

• The node is called a ‘dummy header’ as it stores
no actual information (data which the other
nodes store).

9 of 23

Linked Lists vs Arrays

• Linked lists are containers as are arrays/lists.
• Unlike an array/list, you cannot access data

directly in a linked list.
• Therefore access to an array element is done in

constant time, but to a linked list element takes
O(n).

• However, if you want to insert or delete into an
array it takes O(n) time, whereas with a linked list
it takes constant time.

10 of 23

Insertion into a List [1]

11 of 23

first
NULL

newNode

positionPointer

• Locate node in front of the insertion point

Insertion into a List

12 of 23

first
NULL

newNode

positionPointer

• Reassign the ‘next’ pointer of the new node

Insertion into a List

13 of 23

first
NULL

newNode

positionPointer

• Reassign the ‘next’ pointer of the node in front of the new node

Insertion into a List

14 of 23

first
NULL

• The two other pointers are no longer needed as the node is now part of the list.

Deletion from a List

15 of 23

first
NULL

positionPointer

deletePointer

• Locate the node in front of the node to be deleted, as well as the node to be deleted.

Deletion from a List

16 of 23

first
NULL

positionPointer

deletePointer

• Reassign the ‘next’ pointer of the node in front of that to be deleted.

Deletion from a List

17 of 23

first
NULL

positionPointer

deletePointer

• Reassign the ‘next’ pointer of the node to be deleted, setting it to NULL.

Deletion from a List

18 of 23

first
NULL

positionPointer

deletePointer

• Release the old node’s storage back to the OS, using ‘delete’.

Deletion from a List

19 of 23

first
NULL

• The two pointers are no longer needed as the node is no longer part of the list.

END

The STL List
• The STL has a linked list template.

• Just as the vector replaces the array, the list template replaces ‘home-
coded’ linked lists. [1]

• As with the list, sometimes it needs to be encapsulated, sometimes it
doesn’t.

• If you find yourself repeating code that accesses a linked list, then
encapsulate it!

• The list requires the <list> header file.

• It is declared in the same way as a list:

typedef list<int> IntList;

IntList mylist;

20

STL list Methods

21

mylist.clear () Empties the list.

mylist.empty () Returns true if the list is empty.

mylist.erase (<various>) Erases a part of the list.

mylist.insert (<various>) Add data to the list.

mylist.push_back (data) Add one piece of data to the end of the list.

mylist.pop_back () Delete the last item in the list.

mylist.push_front (data) Add one piece of data to the front of the list.

mylist.pop_front () Delete the first item in the list.

mylist.begin() Returns an iterator that points to the first item in
the list.

mylist.end() Returns an iterator that points to just after the last
item in the list.

mylist.size() Returns the size of the list.

mylist.sort() Sorts the list.

mylist.swap (mylist2) Swaps the contents of the two lists.

Seem Familiar?
• Yes, these are almost exactly the same methods as listed for the STL

std::vector class.

• The huge advantage of the STL is that the classes all have almost identical
methods and operators.

• There are a few that are unique to one or other class, but on the whole
they are the same.

• Here, the two that are in list and not in vector are push_front, pop_front
and sort.

• Almost all of the STL classes can also all be passed to the same algorithms
in the algorithm class.

• If they can’t then the compiler will soon let you know!

22

Advantages of Encapsulation Again
• Lets suppose you want a container of Lights.

• When you first code it you use a vector of Lights as the data structure.

• After a while you realise that a linked list would be a better container and
you decide to change to a list.

• If you had not encapsulated it, you now have to go through possibly
thousands of lines of code in multiple files to alter it from a vector to a
list.

• If you encapsulated it, you probably only have to change a few lines in
only two files. This is because the underlying container would have been
private and all the other code in the various files would not have direct
access to it.

– If you designed your encapsulation well, there would be no need to
change the public access methods just because the underlying
container was changed from a vector to a list.

• A very big time saver!!

23

Readings

• Textbook: Chapter on Linked Lists.

– Go through the programming Example on video
store at the end of the chapter.

• Chapter on Standard Template Library

• Re-read chapter 1 “The Object Oriented
paradigm in Design Patterns Explained: A New
Perspective on Object-Oriented Design. See Topic 1

readings. Available as an ebook from the library.

24

Further exploration

• For a more details of linked lists with some
level of language independence, see the
reference book, Introduction to Algorithms
section on “Linked Lists” in the chapter on
“Elementary Data Structures” (10).

• For more on STL containers see
http://www.cplusplus.com/reference/stl/

25

http://www.cplusplus.com/reference/stl/

Two Dimensions

• Two dimensional structures are complicated.
• Therefore they should always be encapsulated.
• This also gives great freedom in how they should be implemented.
• And great freedom to change the implementation if required.
• Some possibilities are:

– an old-fashioned two dimensional array
– an array of vectors
– a vector of arrays
– an array of lists
– etc
– in other words an array/list/vector of array/list/vector

26 of 12

Which One?
• The choice will depend on the what you are trying to model.
• Ask yourself:

– Do you know the dimensions in advance?
– Are there always going to be the same number of columns in each row?
– Does there need to be a set number of rows, even if there is nothing in each

row?
– Will you need to add/delete rows or columns at the ends?
– Will you need to insert/delete rows or columns in the middle?
– Will you need to insert/delete a single piece of data at the end of a single

row?
– Will you need to insert/delete a single piece of data in the middle moving

along the other data in that row only?
– Do you need direct access to the data?

• When you can answer all these questions, you will be able to choose the
correct combination of data structures for the task.

27 of 12

An Old Fashioned 2D Array

• // A two dimensional array of DataType objects
• typedef DataType TableType[ROWS][COLS]; // [1]

• ...

• class Table
• {
• public:
• ...
• private:
• TableType m_array;
• }

28

Uses exactly ROWS x
COLS slots of the size

of DataType

Possible Application
Icon Storage, but can be anything else

An Array of Vectors

• // A vector of DataType objects
• typedef vector<DataType> Row;

• // Rows of these vectors
• typedef Row TableType[ROWS];

• ...

• class Table
• {
• public:
• ...
• private:
• TableType m_array;
• }

29 of 12

Each row can be a
different size, but

there are still exactly
ROWS number of

rows, even if some
are empty.

The STL vector takes
care of the rows.

Possible Application
Accumulator for a fixed rows and

variable columns

A Vector of Vectors

• // A vector of DataType objects
• typedef vector<DataType> Row;

• // vector of these vectors
• typedef vector<Row> TableType;

• ...

• class Table
• {
• public:
• ...
• private:
• TableType m_array;
• }

30 of 12

Each row can be a
different size, and

now we only have the
rows we actually

want. Variable
columns

Possible Application
Accumulator for an unknown number

of items

An Array of Lists

• // A list of DataType
• typedef list<DataType> DTlist;

• // An array of these lists
• typedef DTList TableType[ROWS];

• ...

• class Table
• {
• public:
• ...
• private:
• TableType m_array;
• }

31 of 12

Each list initialises itself, so this
structure is safer than the last
few. There are ROWS number
of lists, which may or may not

be the best structure.

Possible Application
Lists of students in units

A Vector of Lists

• // A list of DataType
• typedef list<DataType> DTlist;

• // A vector of these lists
• typedef vector<DTList> TableType;

• ...

• class Table
• {
• public:
• ...
• private:
• TableType m_array;
• }

32

Once again we
only have the

number of rows
required. Grow

as needed

Possible Application
Lists of students grouped under

country of origin

A List of Lists

• // A list of DataType
• typedef list<DataType> DTlist;

• // A list of these lists
• typedef list<DTList> TableType;

• ...

• class Table
• {
• public:
• ...
• private:
• TableType m_array;
• }

33

Complicated but
versatile!

Possible Application
A list of people on the carriages of a

train.

A List of Arrays

• // A list of DataType
• typedef DataType Array2D[ROWS][COLS];

• // A list of these lists
• typedef list<Array2D> TableType;

• ...

• class Table
• {
• public:
• ...
• private:
• TableType m_array;
• }

34

Possible Application
A simulation of the seats in the

carriages of a train.

This can be
considered to be a
three dimensional

structure, and
should be coded as a

list of (e.g.)
Carriages.

Etcetera!

• The possibilities are 2n, ,where n is the number of
different types of 1D structure.

• Choosing the right one is the only difficulty.
• But if you encapsulate it, changing your mind

only costs some time and effort within 2 files the
interface (header) and implementation (source)
files.

• Change when not encapsulated could mean a
great deal of work indeed!

35

Full Encapsulation

• Layering the encapsulation makes maintenance easier
and easier.

• Therefore rather than making the inner layer the raw
container type, it would be a class.

• As would the outer layer.

• As well as making maintenance easier, it will make
processing simpler and clearer.

• And, of course, the structure is clearer.

36

Readings

• Textbook: Chapter on Arrays and Strings,
sections on Parallel Arrays, Two and
Multidimensional Arrays.

37

Background – Data Type

• Data Type
– Has a name

– Has a set of values

– Has a set of operations on these values

• Data Types
– “atomic” data types

• values are “not” decomposable, e.g. Integer

– Data Structures
• Values are decomposable

• Values are related, e.g array of integer

38 of 23

Background – Data Type

• Abstraction of Data Types
– Abstract Data Type (ADT)

• Product of our imagination

• Only essential properties – no details of implementation

– Virtual Data Type (VDT)
• Exists on a virtual processor – e.g. Programming language

– Physical Data Type (PDT)
• Exists on the machine – the machine representation

• VDTs implement ADTs

• PDTs implement VDTs

39 of 23

Background – Data Type

Abstract Virtual Physical

Atomic Number of chairs C++ or Java .. etc
integer

“series” of bits

Structured List of chairs C++ or Java .. etc
Array of classes or
structs

“series” of bytes

40 of 23

At the Abstract level, you do not think of the Programming Language.

When you are doing OO design, think at the Abstract level. You want your
classes (at the virtual level of abstraction) mimicking the Abstract level.

Abstract Classes
• Do not forget the big picture on what is “Abstraction” covered earlier.

When we are considering Abstract Classes in C++, we are considering the
virtual level of abstraction. The fact that the word “virtual” is used – see
later – can be helpful but can also be a source of confusion. [1]

• When one class inherits from another class, a method might be replaced.
In the parent class the method is designated a virtual method:
virtual DoSomething (); // polymorphic method

• If the method in the parent class is to be replaced, but is not actually to be
defined in the parent class, then the virtual method must become a ‘pure
virtual method’:
virtual DoSomething () = 0; // parent doesn’t
have a code body

– Any class that contains pure virtual methods is—by default—an
abstract (pure virtual) class: it cannot ever be instantiated as an object
because there is missing code body.

• In UML, virtual classes are indicated by using italics for the class name,
and the relationship of the derived classes is called a ‘realisation’. [2]

• In C++ realisations are implemented using inheritance in the same way as
are derivations but with dashed line.

41 of 23

Pure Virtual Classes in UML

42 of 23

virtual (abstract)
classes are

shown in italics
[2]

The Draw() method is
overridden for each

different type of
ScreenObject

In StarUML, this is in
italics as well but other
tools might not do it, so
work around by saying

void [1]

Realisations have
similar

arrowheads to
derivations, but a

dashed line.

Note that Set and Get methods not shown in this UML diagram.
Protection is not shown either.

Uses of Abstract Classes
• One of the most common reasons for having an Abstract Parent class is so

that different things can be grouped together in a single container.
Polymorphism is used to distinguish the behaviour.

• For example, in a drawing program you need to have some kind of list of
all the objects currently part of the drawing. As all of the objects can be
drawn, the draw method is declared virtual in the parent. This is one of
the conditions needed for polymorphism to occur in C++.

• And you need to be able to iterate through this list when drawing, saving,
printing etc. You will need to access the contained object via the parent
pointer (or reference). This is the other condition for polymorphism to
occur.

• However strongly typed languages don’t usually support an array (or list)
of disparate things: [1]

43 of 23

Circle Square Rectangle Circle Ellipse Rectangle

• However, in C++ what you are allowed to do is have an
array/list of pointers to disparate objects:

• When you iterate through the list, the program calls
the *ScreenObjects Draw() methods, which are
different for each of the classes as the determination
of which Draw() to use gets delayed until run-time.
Polymorphism is occurring [1].

44 of 23

Circle

Square

Rectangle

Circle

Ellipse

Rectangle

*Screen
Object

*Screen
Object

*Screen
Object

*Screen
Object

*Screen
Object

*Screen
Object

• // Shape.h
• // A base class for drawing shapes.
• // Version
• // 01 - Nicola Ritter
• // 02 – smr – see actual code in the Realisation project for this lecture
• // includes additional explanation
• //---

• #ifndef SHAPE
• #define SHAPE

• #include <iostream>
• #include <string>
• using namespace std;

• //---

• const float ASPECT_RATIO = 12.0/8.0; // [1]

• //---

45 of 23

Characters in a
DOS box are
usually 12x8

pixels [1]

• // Read this together with the actual code in Realisations project
• class Shape
• {
• public:
• Shape() {m_height = 0;}
• virtual ~Shape () {}; // designed for inheritance, so virtual destructor

• virtual void Input (); // virtual needed for polymorphism – see actual code
• virtual void Draw () const = 0;
•
• protected:
• int m_height;
• string m_description;

• };

• //---

• #endif

46 of 23

A pure virtual
method,

therefore this is
an abstract class.

[1]

Attributes are protected
not private, so that

derived classes can access
them.

• #include "Shape.h"

• //---

• void Shape::Input ()// code for illustration only
• // I/O makes the class have reduced usage. [1]
• {
• cout << "Enter " << m_description << " height: ";
• cin >> m_height;
• }

• //---

47 of 23

If m_description is
given a different

value by each derived
class, then this output

will inform the user
about the type of

shape

• // Square.h
• // Version
• // 01 - Nicola Ritter
• //---

• #ifndef SQUARE
• #define SQUARE

• //---

• #include "Shape.h"

• //---

• class Square : public Shape
• {
• public:
• Square() {m_description = "square";}
• virtual ~Square () {};

• virtual void Draw () const; // was declared pure in Shape, so this is needed

• private:
• // nothing here
• };

• #endif

48 of 23

Need to
include parent

header

Derived
from Shape

Need to
initialise

description

Draw() method has
to be defined as it
was not defined in

Shape.

• // Square.cpp

• #include "Square.h"

• //---

• void Square::Draw () const
• {
• for (int row = 0; row < m_height; row++)
• {
• for (int col = 0; col < m_height * ASPECT_RATIO; col++)
• {
• cout << '*';
• }
• cout << endl;
• }
• cout << endl;
• }

• //---

49 of 23

Ensures it will
look like a
square on

screen.

• // Triangle.cpp

• #include "Triangle.h"

• //---

• void Triangle::Draw () const
• {
• for (int row = 0; row < m_height; row++)
• {
• for (int col = 0; col < row+1; col++)
• {
• cout << '*';
• }
• cout << endl;
• }
• cout << endl;
• }

• //---

50

Triangle.h is
almost

identical to
Square.h

For Triangles we
don’t care
about the

aspect ratio

• class Rectangle : public Shape
• {
• public:
• Rectangle();
• virtual ~Rectangle () {};

• virtual void Draw () const;
• virtual void Input ();

• private:
• int m_width;
• };

• #endif

51 of 23

An extra
attribute

• // Rectangle.cpp

• #include "Rectangle.h"

• //---

• Rectangle::Rectangle ()
• {
• m_width = 0;
• m_description = "rectangle";
• }

• //---

• void Rectangle::Input ()
• {
• Shape::Input ();
• cout << "Enter rectangle width: ";
• cin >> m_width;
• }

52 of 23

Both the width
and the

description must
be initialised.

First the height is input
using the Shape’s Input()

method, and then the extra
information required by
Rectangle is requested.

• //---

• void Rectangle::Draw () const
• {
• for (int row = 0; row < m_height; row++)
• {
• for (int col = 0; col < m_width * ASPECT_RATIO; col++)
• {
• cout << '*';
• }
• cout << endl;
• }
• cout << endl;
• }

• //---

53 of 23

Driver/Main/Test Program

• // Realisations.cpp
• // Version
• // 01 - Nicola Ritter, date1
• // 02 - Nicola Ritter, date2
• // Refactored into smaller functions that will fit into
• // powerpoint.
• // 03 – smr, date 3, polymorphism is highlighted.
• //---

• #include "Triangle.h"
• #include "Square.h"
• #include "Rectangle.h"
• #include <vector>

• using namespace std;

54 of 23

• //---

• typedef Shape *ShapePtr;

• typedef vector<ShapePtr> ShapeVec; //vec of ptrs

• //---

• // Subroutine prototypes – forward declaration

• void Draw (const ShapeVec &array);

• void Input (ShapeVec &array);

• char Menu ();

• Shape *GetShape (char ch);

55 of 23

• //---
• // READ THIS TOGETHER WITH THE REALISATIONS CODE PROJECT

• int main()
• {
• ShapeVec array;

• Input (array);
• Draw (array);

• cout << endl;
• return 0;
• }

• //---

56 of 23

• //---------------------Polymorphism in action---------------

• void Draw (const ShapeVec &array)
• {
• int size = array.size();
• for (int index = 0; index < size; index++)
• {
• array[index]->Draw();
• }
• cout << endl;
• }

• //---

57

The arrow dereference
symbol is used when a
method is called on a
pointer to an object,

rather than on the object
itself.

The use of the correct Draw()
method during the run of the
program is a result of dynamic
binding – polymorphism. [1]

• void Input (ShapeVec &array)
• {
• char ch = Menu();
• while (ch != 'Q')
• {
• ShapePtr shape = GetShape (ch);
• array.push_back(shape);

• ch = Menu();
• }

• for (int index = 0; index < array.size(); index++)
• {
• array[index]->Input(); //Polymorphic input method
• }
• cout << endl;
• }

58

Get a choice from the
user and then get a
shape based on this

choice. Finally add the
pointer to the shape to

the array

Next get the
dimensions of

the shapes

• //---

• char Menu ()
• {
• string str;
• do
• {
• cout << "S - Square" << endl;
• cout << "T - Triangle" << endl;
• cout << "R - Rectangle" << endl;
• cout << "Q - Quit entry" << endl;
• cin >> str;
• } while (strchr("STRQstrq",str[0]) == NULL);// what does this do?

• return toupper(str[0]);
• }

59

We input a string not a
single character so that

we do not have to
remember to read the

<enter> key.

Users are forced to
input a correct value.

• //---

• ShapePtr GetShape (char ch) // returns a pointer to parent
• {
• ShapePtr shape = NULL;
• switch (ch)
• {
• case 'S':
• shape = new Square;
• break;
• case 'T':
• shape = new Triangle;
• break;
• case 'R':
• shape = new Rectangle;
• break;
• }

• return shape;
• }

60

A pointer to a
Shape can point to
any class derived
from Shape. [1]

Note that we are not
breaking the rules as we are

passing back a pointer
function-wise, not an object.

Interfaces

• Occasionally an abstract class is defined where
– there are no attributes defined;

– all the methods are pure virtual methods – no body

• This type of class is called an interface and is used as just that: it defines
the way in which all derived classes will interface with the outside world.

• In UML, they are shown with the word <<interface>> in double arrow
braces above the name of the interface:

61

Interfaces

• It is also a good idea to name interfaces starting
with the letter “I” (IDraw instead of Draw).

• Also the name should be in italics (IDraw) along
with all other abstract methods.

• There is an alternative way to represent
interfaces using a lollipop or circle used in
component diagrams as opposed to class
diagrams that we are doing. We wouldn’t use
lollipop representation in this unit.

62

Readings

• Textbook: Chapter on Classes and Data
Abstractions.

• Textbook: Chapter on Inheritance and
Composition, entire section on Inheritance up to
but not including the short section on
Composition.

• Chapter on Pointers, Classes, Virtual Functions,
Abstract Classes, and Lists, start at section on
Inheritance, Pointers and Virtual Functions.

63

